[[Mathematics MOC]] # Category Theory MOC Category theory, affectionately called "General Abstract Nonsense" by many mathematicians. [[History of Category Theory]] ## Objects The central object of category theory is, of course, the [[Category]]. We can reason about objects and morphisms in a category using a [[Commutative diagram]]. ### Classification See [[types of category]]. ### Additional structure - Category + Tensor product = [[Monoidal category]] - Category + Internal hom = [[Closed category]] ## Internal constructions - [[Universal construction]] - [[Limits and colimits]] - [[Initial and terminal objects]] - [[Products and coproducts]] ## $n$-morphisms of categories - [[Functor]], [[Natural transformation]] ## External constructions - [[Quotient category]] - [[Free category]] - [[Product category]] - [[Subcategory]] - [[Comma category]] ## Categorification - [[Categorification]] (Vertical) - [[Oidification]] (Horizontal) ## Categorical foundations - [[ETCS]] ### Issues - [[Russell's paradox for categories]] ## Bibliography - [[@awodeyCategoryTheory2010]] - [[@milewskiCategoryTheoryProgrammers2019]] - [[@maclaneCategoriesWorkingMathematician1978]] --- #MOC | #state/develop | #SemBr